An Analytical Evaluation of Matricizing Least-Square-Errors Curve Fitting to Support High Performance Computation on Large Datasets
نویسنده
چکیده
The procedure of Least Square-Errors curve fitting is extensively used in many computer applications for fitting a polynomial curve of a given degree to approximate a set of data. Although various methodologies exist to carry out curve fitting on data, most of them have shortcomings with respect to efficiency especially where huge datasets are involved. This paper proposes and analyzes a matricized approach to the Least Square-Errors curve fitting with the primary objective of parallelizing the whole algorithm so that high performance efficiency can be achieved when algorithmic execution takes place on colossal datasets.
منابع مشابه
Mammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease
Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملShort Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression
The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...
متن کاملProgressive and iterative approximation for least squares B-spline curve and surface fitting
The progressive and iterative approximation (PIA) method is an efficient and intuitive method for data fitting. However, in the classical PIA method, the number of the control points is equal to that of the data points. It is not feasible when the number of data points is very large. In this paper, we develop a new progressive and iterative approximation for least square fitting (LSPIA). LSPIA ...
متن کاملThe Application of Least Square Support Vector Machine as a Mathematical Algorithm for Diagnosing Drilling Effectivity in Shaly Formations
The problem of slow drilling in deep shale formations occurs worldwide causing significant expenses to the oil industry. Bit balling which is widely considered as the main cause of poor bit performance in shales, especially deep shales, is being drilled with water-based mud. Therefore, efforts have been made to develop a model to diagnose drilling effectivity. Hence, we arrived at graphical cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1512.08017 شماره
صفحات -
تاریخ انتشار 2015